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Abstract. The spin- 5
2
resonance effects are studied within the coupled-channel effective Lagrangian model

for baryon resonance analysis. We extend our previous hadronic calculations to incorporate the D15, F15,
D35, F35 states. While the effect of the spin- 5

2
resonances to the ηN , KΛ, and KΣ reactions is small, the

contribution to the ωN is found to be important. The results for the “conventional” and Pascalutsa-like
spin- 5

2
descriptions are discussed.

PACS. 11.80.-m Relativistic scattering theory – 13.75.Gx Pion-baryon interactions – 14.20.Gk Baryon
resonances with S = 0

1 Introduction

The extraction of baryon resonance properties is one of the
important tasks of modern hadron physics. Great efforts
have been made in the past to obtain this information
from the analysis of pion- and photon-induced–reaction
data. The precise knowledge of these properties is an im-
portant step towards understanding the hadron structure
and finally the strong interactions.

Some quark models (see [1] and references therein) pre-
dict that the baryon resonance spectrum may be richer
than discovered so far. This is the so-called problem of
“missing” nucleon resonances. One assumes that these
states are weakly coupled to pion channels and are conse-
quently not clearly seen in πN , 2πN and ηN reactions
from which experimental data are most often used for
baryon resonance analyses. To incorporate other possi-
ble finale states a unitary coupled-channel model (Giessen
model) has been developed which includes γN , πN , 2πN ,
ηN , KΛ final states and deals with all available experi-
mental data on pion- and photon-induced reactions [2,3].
The most recent extensions of this model include KΣ
and ωN final states [4–6] as well, which allows for the
simultaneous analysis of all hadronic and photoproduc-
tion data up to

√
s = 2GeV. A shortcoming of this

study is the missing of higher-spin resonances with spin
J > 3

2
. Since the spin- 5

2
resonances have large electro-

magnetic couplings [7–9], this limited the previous anal-
ysis of the Compton scattering data to the energy region

? Supported by DFG and GSI Darmstadt.
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√
s 6 1.6GeV. Moreover, the extension to higher-spin

baryon spectra becomes unavoidable for investigation of
“hidden” or “missing” nucleon resonances. In particular,
a study of the spin- 5

2
part of the baryon spectra can shed

light on the dynamics of the vector (ω and ρ) meson pro-
duction mechanisms which is itself a very intriguing ques-
tion (see [10] and references therein).

In the present paper we study the effect of spin- 5
2

resonance contributions to πN , 2πN , ηN , KΛ, KΣ, and
ωN final states. Starting from the effective Lagrangian
coupled-channel model [5] we extend our previous
hadronic calculation [5] by including the D15, F15,
D35, F35 resonances and simultaneously analysing all
available pion-induced–reaction data in up to the 2GeV
energy region. Due to the coupled-channel calculations
this model provides a stringent test for the resonance
contributions to the all open final states. Similar to the
spin- 3

2
case in [5,6], the contributions from spin- 5

2
states

are investigated for two different types of the spin- 5
2

couplings: for the “conventional” (C) and Pascalutsa
(P ) prescriptions. While the first approach dates back
to the original work of Rarita and Schwinger [11] and
is widely used in the literature, the latter one assumes
the gauge-invariant resonance coupling. Although the
data quality is not good enough to distinguish between
these two pictures now, this question is challenging for
an understanding of the meson-baryon interactions. With
this aim in mind, the present work extends our earlier
multi-channel analysis based on an effective Lagrangian
approach by including also the spin- 5

2
resonances.
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The paper is organized as follows. We start in sect. 2
with a description of the formalism concentrating mainly
on the spin- 5

2
couplings; the complete discussion of

our model including all other couplings can be found
in [5,6,12]. In sect. 3 we discuss the results of our cal-
culations in comparison with the previous studies [5] and
finish with a summary (sect. 4).

2 The Giessen model

We solve the Bethe-Salpeter coupled-channel equation in
the K-matrix approximation to extract scattering ampli-
tudes for the final states under consideration. The valid-
ity of the K-matrix approximation has been tested by
Pearce and Jennings who have performed a fit to the elas-
tic πN phase shifts up to 1.38GeV with the “smooth”,
Blankenbecler-Sugar and the K-matrix propagators [13].
They have found no significant differences in the parame-
ters extracted in the three cases. Also, a successful descrip-
tion of the pion- and photon-induced–reaction data [5,6]
and η production [14] points to the applicability of this
approximation for investigation of the baryon resonance
spectra.

In order to decouple the equations we perform a
partial-wave decomposition of the T -matrix into total spin
J , isospin I, and parity P = (−1)J± 1

2 . Then the partial-
wave amplitudes can be expressed in terms of an interac-
tion potential K via the matrix equation

T I,J± =

[
KI,J±

1− iKI,J±

]
, (1)

where each element of the matrices T I,J±
fi and KI,J±

fi cor-

responds to a given initial and final state (i, f = πN ,
2πN , ηN , KΛ, KΣ, ωN). The interaction potential is
approximated by tree-level Feynman diagrams which in
turn are obtained from effective Lagrangians [5,12]. The
T -matrix (1) fulfils unitarity as long as the K-matrix
is Hermitian. In our model the following 19 reso-
nances are included: P33(1232), P11(1440), D13(1520),
S11(1535), P33(1600), S31(1620), S11(1650), D15(1675),
F15(1680), D33(1700), P11(1710), P13(1720), P31(1750),
P13(1900), P33(1920), F35(1905), D35(1930), F15(2000),
and D13(1950), which is denoted as D13(2080) by the
PDG [7].

The Lagrangian for the spin- 5
2
resonance decay to a

final baryon B and a (pseudo)scalar meson ϕ is chosen in
the form

L
5

2

ϕBR =
gϕBR
m2
π

ūµνR Θµδ(a)Θνλ(a
′)ΓSuB∂

δ∂λϕ+ h.c. (2)

with the matrix ΓS = 11 if resonance and final meson
have identical parity and ΓS = iγ5 otherwise. The off-shell
projector Θµν(a) is defined by

Θµν(a) = gµν − aγµγν , (3)

where a is a free off-shell parameter. Since the on-shell
symmetric spin- 5

2
field uµνR has to obey the Dirac equation

and satisfies the conditions γµu
µν
R = ∂µu

µν
R = gµνu

µν
R =

0 [11] the second part in (3) only contributes for off-
shell particles, giving rise to lower-spin off-shell compo-
nents in (2). In general the interaction Lagrangian (2) can
have two off-shell projectors matched with both vector in-
dices of the resonance field tensor. However, as we will see
later, a good description of the experimental data can be
achieved already with a single parameter a keeping the
second one equal to zero. Thus, to keep our model as sim-
ple as possible we use only one off-shell projector in (2).

The widths of the hadronic resonance decays as ex-
tracted from the Lagrangian (2) are

Γ±(R 5

2

→ ϕB) = I
g2ϕBR
30πm4

π

k5ϕ
EB ∓mB√

s
. (4)

The upper sign corresponds to the decay of a resonance
into a meson with the identical parity and vice versa. I is
the isospin factor and kϕ, EB , and mB are the meson mo-
mentum, energy and mass of the final baryon, respectively.

The coupling of the spin- 5
2
resonances to the ωN final

state is chosen to be

L
5

2

ωN = ūµλR ΓV

(
g1

4m2
N

γξ + i
g2

8m3
N

∂ξN + i
g3

8m3
N

∂ξω

)

×
(
∂ωξ gµν − ∂ωµgξν

)
uN∂

ω
λω

ν + h.c., (5)

where the matrix ΓV is 11 (iγ5) for positive (negative) res-
onance parity and ∂µN (∂ωµ ) denotes the partial derivative
of the nucleon and the ω-meson fields, respectively. The
above Lagrangian is constructed in the same manner as
the one for spin- 3

2
in [5]. Similar couplings were also used

to describe electromagnetic processes [10,15–17]. Since the
different parts of (5) contribute at different kinematical
conditions we keep all three couplings as free parameters
and vary them during the fit. The helicity amplitudes for
the decay R→ ωN are given by

AωN
3

2

=

√
EN ±mN√

5mN

kω
4m2

N

(
− g1(mN ∓mR)

+ g2
(mREN −m2

N )

2mN
+ g3

m2
ω

2m2
N

)
,

AωN
1

2

=

√
EN ±mN√
10mN

kω
4m2

N

(
g1(mN ± (mR − 2EN ))

+ g2
(mREN −m2

N )

2mN
+ g3

m2
ω

2m2
N

)
,

AωN
0 =

√
(EN ±mN )√

5mN

kωmω

4m2
N

(
g1 ± g2

EN

2mN

± g3
(mR − EN )

2mN

)
, (6)

with the upper (lower) signs corresponding to positive
(negative) resonance parity. The lower indices stand for
the helicity λ of the final ωN state λ = λV − λN , where
we use an abbreviation as follows: λ = 0 : 0+ 1

2
, 1
2
: 1− 1

2
,

3
2
: 1 + 1

2
. The resonance ωN decay width Γ ωN can be
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written as the sum over the three helicity amplitudes given
above:

ΓωN =
2

(2J + 1)

kωmN

2πmR

3/2∑

λ=0

∣∣AωN
λ

∣∣2 , (7)

where J = 5
2
for the spin- 5

2
resonance decay.

For practical calculations we adopt the spin- 5
2
projec-

tor in the form

Pµν,ρσ
5

2

(q) =
1

2
(TµρT νσ + TµσT νρ)− 1

5
TµνT ρσ

+
1

10

(
TµλγλγδT

δρT νσ + T νλγλγδT
δσTµρ

+TµλγλγδT
δσT νρ + T νλγλγδT

δρTµσ
)
, (8)

with

Tµν = −gµν + qµqν

m2
R

, (9)

which has also been used in an analysis of the KΛ photo-
production [16].

As is well known the description of particles with
spin J > 1

2
leads to a number of different propagators

which have non-zero off-shell lower-spin components. To
control these components the off-shell projectors (3) are
usually introduced. There were attempts to fix the off-
shell parameters and remove the spin- 1

2
contribution in

the case of spin- 3
2

particles [18]. However, it has been
shown [19] that these contributions cannot be suppressed
for any value of a. Indeed, Read [20] has demonstrated
that the choice of the off-shell parameter in the coupling
is closely linked to the off-shell behavior of the propagator.
To overcome this problem Pascalutsa suggested gauge in-
variance as an additional constraint to fix the interaction
Lagrangians for higher spins and remove the lower-spin
components [21]. Constructing the spin- 3

2
interaction for

a Rarita-Schwinger field uµ3
2

by only allowing couplings to

the gauge-invariant field tensor Uµν
3

2

= ∂µuν3
2

− ∂νuµ3
2

Pas-

calutsa derived an interaction which (for example) for the
πN∆ coupling is

LπN∆ = fπūNγ5γµŨ
µν∂νϕ+ h.c., (10)

where Ũµν is the tensor dual to Uµν : Ũµν = εµνλρUλρ and
εµνλρ is the Levi-Civita tensor. The same arguments can
also be applied to spin- 5

2
particles. In this case the am-

plitude of meson-baryon scattering can be obtained from
the conventional amplitude by the replacement

Γµν(p
′, k′)

Pµν,ρσ
5

2

(q)

/q −mR
Γρσ(p, k)

−→ Γµν(p
′, k′)

Pµν,ρσ
5

2

(q)

/q −mR
Γρσ(p, k)

q4

m4
R

, (11)

where Γρσ(p, k) are vertex functions that follow from (2)
and (5) by applying Feynman rules and the projector
Pµν,ρσ

5

2

(q) is obtained from (8), (9) by the replacement

qµqν/m2
R −→ qµqν/q2.

This procedure is similar to that which has been used
in the spin- 3

2
case [21]. It has been shown for the spin- 3

2
case [22], that both prescriptions are equivalent in the ef-
fective Lagrangian approach as long as additional contact
interactions are taken into account when the Pascalutsa
couplings are used. The differences between these descrip-
tions have been discussed in [5,23,24] and here we perform
calculations by using both “conventional” (C) and Pasca-
luta (P ) approaches. Similar to the spin- 3

2
case [20], the

off-shell parameters a in (3) can be linked to the coupling
strengths extracted through (6)

In order to take into account the internal structure
of mesons and baryons each vertex is dressed by a corre-
sponding form factor:

Fp
(
q2,m2

)
=

Λ4

Λ4 + (q2 −m2)2
. (12)

Here q is the four-momentum of the intermediate particle
and Λ is a cutoff parameter. In [5] it has been shown that
the form factor (12) gives systematically better results as
compared to other ones, therefore we do not use any other
forms for F (q2). The cutoffs Λ in (12) are treated as free
parameters and allowed to be varied during the calcula-
tion. However, we demand the same cutoffs in all channels
for a given resonance spin J : ΛJπN = ΛJππN = ΛJηN = . . .

etc., (J = 1
2
, 3

2
, 5

2
). This greatly reduces the number of

free parameters; i.e. for all spin- 5
2
resonances there is only

one cutoff Λ 5

2

for all decay channels.

To take into account contributions of the 2πN chan-
nel in our calculations we use the inelastic partial-wave
cross-section σJI2πN data extracted in [25]. To this end the
inelastic 2πN channel is parameterized by an effective ζN
channel where ζ is an effective isovector meson with mass
mζ = 2mπ. Thus ζN is considered as a sum of different
(π∆, ρN , etc.) contributions to the total 2πN flux. We
allow only resonance ζN couplings since each background
diagram would introduce a meaningless coupling parame-
ter. Despite this approximation the studies [2,3,14,5] have
achieved a good description of the total partial-wave cross-
sections [25] and we proceed in our calculations by using
the above prescription. For the R → ζN interaction the
same Lagrangians are used as for the R → πN couplings
taking into account the positive parity of the ζ-meson.

3 Results and discussion

We use the same database as in [5] with additional elas-
tic πN data for the spin- 5

2
partial-wave amplitudes taken

from the VPI group analysis [26]. For the 2πN channel we
use the spin- 5

2
partial-wave cross-sections derived in [25].

We confine ourselves to the energy region mπ + mN 6√
s 6 2GeV. The database on the ηN , KΛ, KΣ and ωN

channels incorporates all available experimental informa-
tion from the pion threshold up to the 2GeV energy re-
gion. This includes partial and differential cross-sections
and polarisation measurements. The references on these
reactions, 34 in total, are summarized in [12].
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Table 1. χ2 of the C (first line) and P fits (second line). The
D35 πN and 2πN data have not been taken into account (see
text).

Fit Total π χ2
ππ χ2

π2π χ2
πη χ2

πΛ χ2
πΣ χ2

πω

C 2.60 2.60 7.63 1.37 2.14 1.83 1.23
P 3.65 3.80 10.06 1.75 2.54 2.93 1.83

The results presented in the following are from ongoing
calculations to describe the data in all channels simulta-
neously. The resulting χ2 of our best overall hadronic fits
are given in table 1. The obtained χ2ππ and χ2π2π are cal-
culated using experimental data from all πN and 2πN
partial waves up to spin- 5

2
except the D35-wave. We find

a problem with the description of the D35 partial wave so
the resulting χ2ππ turns out to be very large. Hence the χ2ππ
values given in table 1 are calculated by neglecting the πN
data points for the D35 partial wave. From table 1 one can
conclude that the C-prescription leads to a better descrip-
tion of the data in all partial waves. Note, that since the
P -coupling does not have “off-shell” background we also
include additional D13(1700) and S31(1900) resonances in
the P -calculations [5,6].

Compared to the previous best hadronic fits C-p-π+
and P -p-π+ from [5,6], we obtain the same values for
cutoffs and non-resonant couplings. The only exception
is the Λ 1

2

= 2.79 for the C-coupling which is less than

that of C-p-π+. In addition we find gNNω = 4.59(4.20)
and κNNω = −0.12(0.06) for C(P )-coupling calculations
which slightly differ from [5]. The results for the πN
partial-wave amplitudes are shown in figs. 1, 2 in compar-
ison with C-p-π+ result from [5]. We do not show here the
corresponding P -p-π+ result since it almost coincides with
the new P -calculations. The main differences are found for
the conventional coupling calculations in comparison with
the previous study. A substantially better description in
the P13 partial wave is due to the additional off-shell back-
ground generated by spin- 5

2
resonances. The same effect

also improves the description of the real and imaginary
high-energy tails of the P31 and S31 amplitudes, respec-
tively. The contribution from the spin- 5

2
resonances can

also be seen in the D33 amplitude which is also affected
by spin- 5

2
off-shell components. This leads to a worsen-

ing in the imaginary part of D33 above 1.8GeV, giving
however improvement in the corresponding real part.

The D15(1675), F15(1680), and F35(1905) resonances
were included in our calculations. We have also found ev-
idence for a second F15 state around 1.98GeV which is
rated two-star by [7]. The results for πN → 2πN partial-
wave cross-sections are shown in fig. 3. We stress that the
πN partial-wave inelasticities are not fitted but obtained
as a sum of the individual contributions from all open
channels.

In the following each spin- 5
2
wave is discussed sepa-

rately. The extensive discussion of the spin- 1
2
and spin- 3

2
partial waves can be found in [5,6]. The parameters of the
corresponding baryon resonances are listed in [27].

D15. The elastic VPI data show a single resonant peak
which corresponds to the well-establishedD15(1675) state.
We find a good description of the elastic amplitude in both
the C- and P -calculations.

The 2πN data [25] are systematically below the to-
tal inelasticity of the VPI group [26]. This can be an in-
dication that apart from 2πN there are additional con-
tributions from other inelastic channels. However, in the
analysis of Manley and Saleski [28] as well as in the most
recent study of Vrana et al. [29] the total inelasticity in the
D15-wave is entirely explained by the resonance decay to
the π∆ channel. We also find no significant contributions
from the ηN , KΛ, KΣ, and ωN channels to the total πN
inelasticity in the present hadronic calculations. The cal-
culated 2πN cross-sections are found to be substantially
above the data from [25] in all fits. Indeed, the difference
between the 2πN and inelasticity data runs into 2mb at
1.67GeV. This flux can be absorbed neither by ηN , KΛ,
KΣ, ωN channels, see fig. 4. Thus we conclude that either
the πN and 2πN data are inconsistent with each other
or other open channels (as 3πN) must be taken into ac-
count. To overcome this problem and to describe the πN
and 2πN data in the D15 partial wave the original 2πN
data error bars [25] were enlarged by a factor 3. The same
procedure was also used by Vrana et al. [29] and Cutkosky
et al. [30] to fit the inelastic data.

In both C- and P -coupling calculations the total in-
elasticities in the D15-wave almost coincide with the
partial-wave cross-sections and therefore are not shown
in fig. 3 (left top). A good description of the inelasticity
in the D15-wave is achieved and the extracted resonance
parameters are also in agreement with other findings (see
next section).

F15. The F15(1680) and F15(2000) resonances are iden-
tified in this partial wave. The inclusion of the second res-
onance significantly improves the description of the πN
and 2πN experimental data in the higher-energy region.
Some evidence for this state was also found in earlier
works [28,31]. A visible inconsistency between the inelas-
tic VPI data and the 2πN cross-section from [25] above
1.7GeV can be seen in fig. 3 (left bottom). The three
data points at 1.7, 1.725, and 1.755GeV have, therefore,
not been included in our calculations. Finally we achieve a
reasonable description for both πN and 2πN data. The C-
and P -coupling calculations give approximately the same
results.

F35. A single resonance state F35(1905) was taken into
account. Some other models find an additional lower-lying
resonance with a mass of about 1.75GeV [28,32,31,29].
However, we already find a good description of the elas-
tic πN amplitudes and the 2πN cross-sections by only
including the single F35(1905) state. The inclusion of a
second state with somewhat lower mass leads to a worse
description of the πN and 2πN data due to the strong
interference between the two nearby states. The two 2πN
data points at 1.87 and 1.91GeV, which are apparently
above the total inelasticity, have not been included in the
calculations.
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Fig. 1. The πN → πN partial waves for I = 1
2
. The solid (dashed) line corresponds C(P )-calculations. The dash-dotted line is

the best hadronic fit C-p-π+ from [5]. The data are taken from [26].
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Fig. 2. The πN → πN partial waves for I = 3
2
. The solid (dashed) line corresponds C(P )-calculations. The dash-dotted line is

the best hadronic fit C-p-π+ from [5]. The dotted line is the result for the D35-wave obtained with reduced nucleon cutoff (see
text). The data are taken from [26].
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Fig. 3. The inelastic D15, F15, F35, and D35 waves. The solid (dashed) line corresponds to calculation C (P ) for the 2πN
channel. Open and filled circles represent the total inelasticity from the VPI group [26] and the 2πN data [25], respectively.
The calculated inelasticities almost coincide with the calculated 2πN cross-sections and are not shown here. Calculation with
a reduced nucleon cutoff is shown by the dotted line.

The total inelasticity in the F35 partial wave almost co-
incides with the calculated 2πN cross-section and is not
shown in fig. 3. Note, that the 2πN data at 1.7GeV are
slightly below the total inelasticity from [26]. This could
indicate that other inelastic channels (as 3πN) give addi-
tional contributions to this partial wave.

There are also difficulties in the description of the 2πN
low-energy tails of the D15 and F15 partial waves below
1.6GeV, where the calculated cross-sections are slightly
below the 2πN data. The discrepancy leads to a signif-
icant rise in χ2π2π (cf. table 1). The same behavior has
been found in our previous calculations for the DI3 par-
tial waves [5]. There, it has been suggested that the prob-
lem might be caused by the description of the 2πN chan-
nel in terms of an effective ζN state. Indeed, the findings
of [28,29] show strong π∆ decay ratios in all three D15,
F15, and F35 partial waves. The description of the 2πN
channel in terms of the ρN and π∆ channels may change
the situation when taking into account the ρN and π∆
phase spaces and corresponding spectral functions. Up-
coming calculations will address this question.

D35. A single D35(1930)-resonance is taken into ac-
count. However, there is no clear resonance structure in
the πN data for this partial wave. The data [26] also show
a total inelasticity at the 2mb level, whereas the 2πN
channel was found to be negligible [25]. It has been sug-
gested [25] that this channel could have an important in-
elastic 3πN contribution. Since the measured 2πN cross-
section is zero we have used the inelastic πN data with en-
larged error bars instead of the 2πN data to pin down the
2πN D35 contributions. Even in this case we have found

difficulties in the description of the D35 partial wave.
The πN channel turns out to be strongly influenced by
the u-channel nucleon and resonance contributions which
give significant contributions to the real part of D35. As
can be seen in fig. 2 the C- and P -coupling calculations
cannot give even a rough description of the experimental
data [26]. The situation can be improved by either using
a reduced nucleon cutoff ΛN or by neglecting the nucleon
u-channel contribution in the interaction kernel. The lat-
ter approximation has been used in the coupled-channel
approach of Lutz et al. [33]. To illustrate this point we
have carried out an additional fit for the C-coupling with
the reduced cutoff ΛN = 0.91 taking only the πN and
2πN data into account. The calculated χ2 are χ2ππ = 3.63
and χ2π2π = 7.87, where the D35 data are also taken into
account (note that all values in table 1 are calculated by
neglecting these data points). The results for the D35 par-
tial wave are shown in fig. 2 by the dotted line. In all cal-
culations for D35 presented in fig. 2 the D35(1930) mass
was found to be about 2050MeV. One sees that the calcu-
lations with a reduced nucleon cutoff lead to a better de-
scription of the D35 data giving, however, a worse descrip-
tion of other πN partial-wave data. Note, that a reduction
of the nucleon cutoff is required for a successful description
of the lower-spin photoproduction multipoles [5,6], which
also leads to a worsening in χ2 for the πN elastic channel.

Finally, we conclude that the main features of the con-
sidered spin- 5

2
partial waves except for D35 are well re-

produced. From figs. 1-3 one can see that there is no sig-
nificant difference between the conventional (8) and the
Pascalutsa (11) spin- 5

2
couplings.
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Fig. 4. The total cross-sections for the inelastic reactions. The solid (dashed) line corresponds to the C (P ) result. The
dotted line shows our previous results C-p-π+ [5]. The contributions from the spin- 5

2
states are shown by dash-dotted (C) and

dash-double-dotted (P ) lines. For the data references see [5].

The parameters of the spin- 5
2
resonances are presented

in table 2. We note that the total resonance widths calcu-
lated here do not necessarily coincide with the full widths
at half-maximum because of the energy dependence of the
decay widths (4), (7) and the form factors used [5]. We do
not show here the parameters of the D35(1930)-resonance
because of the problems in the D35(1930) partial wave.
Although a good description of the experimental data is
achieved some differences in the extracted resonance pa-
rameters for the C- and the P -coupling calculations exist.

We obtain a little lower mass for the D15(1675) as
compared to that obtained by Manley and Saleski [28]
and Vrana et al. [29], but in agreement with other find-
ings [34,35]. The total width is found to be consistent with
the results from [34,31,29]. In the ηN channel our calcula-
tions show a small (≈ 0.6%) decay fraction which is some-

what higher than the value obtained by Batinić et al.: 0.1±
0.1% [35], whereas Vrana et al. give another bound: ±1%.
We conclude that both fits give approximately the same
results for the resonance masses and branching ratios.

The properties of the F15(1680) state are found to be
in good agreement with the values recommended by [7].
We find a somewhat smaller branching ratio in the ηN
channel as compared to that of [35]. However, the ob-
tained value RηN = 0.1% is again in agreement with
the findings of Vrana et al. [29]: ±1%. The parameters
of the second F15(2000)-resonance differ strongly in vari-
ous analyses: Manley and Saleski [28] give 490± 310MeV
for the total decay width, while other studies [36,31] find
it at the level of 95–170MeV. Moreover, this state has not
been identified in the investigations of [29,35]. Although
we find different results for Γtot in the two independent
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Table 2. Properties of the spin- 5
2
resonances considered in the present calculation. Masses and total widths Γtot are given in

MeV, the decay ratios R in percent of the total width. In brackets, the sign of the coupling is given (all πN couplings are chosen
to be positive).

L2I,2S Mass Γtot RπN R2πN RηN RKΛ RKΣ RωN

D15(1675) 1665 144 40.2 59.1(−) 0.6(−) 0.0(+) −0.04(a) –

1662 138 41.2 58.4(+) 0.4(−) 0.0(−) 0.02(a) –

F15(1680) 1674 120 68.5 31.5(−) 0.1(+) 0.0(+) 0.07(a) –

1669 122 65.8 34.2(+) 0.0(−) 0.0(+) 0.13(a) –

F15(2000) 1981 361 9.0 84.0(+) 4.3(−) 0.5(b)(−) 0.4(−) 2.2
1986 488 9.5 88.2(−) 0.3(−) 0.1(+) 0.2(−) 1.7

F35(1905) 1859 400 11.3 88.7(+) – – 0.7(b)(+) –
1830 457 10.3 89.7(−) – – 0.0(+) –

(a) The coupling is presented since the resonance is below threshold.

(b) Decay ratio in 0.1h. The first line corresponds to C-calculation and the second one to P .

calculations, the branching ratios are close to each other.
A small decay width of about 4.3% is found for the ηN
channel (C). However, since the F15(2000)-resonance is
found to be strongly inelastic with 84–88% of inelastic-
ity absorbed by the 2πN channel, more 2πN data above
1.8GeV (cf. fig. 3) are needed for a reliable determination
of the properties of this state.

The parameters of the F35(1905) state are in good
agreement with [7]. Both fits give approximately the same
result for the decay branching ratios.

All considered resonances have a rather small decay
ratio to the ηN , KΛ, KΣ, and ωN channels. The only
exception is the F15(2000)-resonance where a small decay
width to ηN has been found for the conventional coupling
calculations.

In fig. 4 the results for ηN , KΛ, KΣ, and ωN total
cross-sections are shown in comparison with best hadronic
fit C-p-π+ from [5]. The main difference from the previ-
ous result is found in the ωN final state where a visi-
ble effect from the inclusion of the spin- 5

2
resonances is

found in the C-calculations. Although the D15(1675) and
F15(1680) states are below the ω production threshold,
they give noticeable contributions in the C-coupling cal-
culations. This effect is, however, less pronounced in the
P -calculations where the role of D15(1675) and F15(1680)
are found to be less important.

Since the hadronic ωN data include about 115 data
points the couplings to the ωN channel are not well
constrained and inclusion of photoproduction data may
change the situation [5]. Looking to the ω photoproduc-
tion reaction the new SAPHIR data may give an opportu-
nity to distinguish between various reaction mechanisms.
We are presently working on this [37].

4 Summary and outlook

We have performed a first investigation of the pion-
induced reactions on the nucleon within the effective La-
grangian coupled-channels approach including spin- 5

2
res-

onances. To investigate the influence of additional back-

ground from the spin- 3
2
and - 5

2
resonances, calculations

using both the conventional and the Pascalutsa higher-
spin couplings have been carried out. A good description
of the available experimental data has been achieved in all
πN , 2πN , ηN , KΛ, KΣ, and ωN final states within both
frameworks. The χ2 is somewhat worse for the Pascalutsa
prescription, but this is at least partly due to the absence
of additional off-shell parameters in these couplings. In
view of this ambiguity in the coupling it is gratifying to see
that both coupling schemes lead to similar physical results
for the baryon properties. The effective Lagrangian model
used in our calculations imposes stringent physical con-
straints on the various channels and, in particular, on the
interplay of the resonance and background contributions.
The latter are generated by the same Lagrangian without
any new unphysical parameters. Thus any remaining dis-
crepancy between the data and the calculation points to
the necessity to improve our understanding of the meson-
baryon interactions further, for example, by including ad-
ditional t-channel exchanges.

Apart from 2πN we find no significant contributions
from other channels to the total πN inelasticities in the
spin- 5

2
waves. Nevertheless, the contributions from higher-

spin resonances can be important in the ω production
channel. More data on this reaction are highly desirable
to establish the role of different reaction mechanisms.

We have found evidence for the F15(2000)-resonance
which is rated two-star by [7] and has not been included
in the most recent resonance analysis by Vrana et al. [29].
However, more precise πN and 2πN data are necessary
to identify this state more reliably in purely hadronic
calculations.

For a complete description of the πN scattering up
to higher energies the J = 5

2
resonances are obviously

needed. Compared to our previous study we arrive at a
better description in the πN , ηN , and πΣ channels for
the conventional coupling calculations. Looking only at
the lower partial waves, the improvement in πN is only
possible due to the additional off-shell background from
the spin- 5

2
resonances. On the other hand, the missing

background in the Pascalutsa prescription is compensated
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by contributions from theD15 and F15 resonances allowing
for a better description in the ηN and ωN final states.

We are proceeding with the extension of our model
by performing a combined analysis of pion- and photon-
induced reactions taking into account spin- 5

2
states. More-

over, the decomposition of the 2πN channel into ρN , π∆
etc. states will be the subject of further investigations.
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